/ miércoles 31 de marzo de 2021

¿Pop o reguetón? Los algoritmos discriminan ciertos géneros musicales

Un estudio revela que sus recomendaciones están sesgadas hacia la música más popular

Las recomendaciones musicales generadas por algoritmos pueden ser menos precisas para los oyentes de estilos musicales como el rock duro o el hip-hop, según una investigación publicada en la revista EPJ Data Science.

Los investigadores compararon la precisión de las recomendaciones generadas por algoritmos para los oyentes de música convencional o dominante (mainstream) y no convencional, para lo que utilizaron un conjunto de datos que contenía los historiales de escucha de 4.148 usuarios de la plataforma Last.fm.

Basándose en los artistas que los usuarios escuchaban con más frecuencia, los autores utilizaron un modelo computacional para predecir la probabilidad de que a estos les gustara la música que recomendaban cuatro algoritmos comunes usados en recomendaciones.

Comprobaron que los oyentes de música convencional parecían recibir consejos musicales más precisos que los oyentes de música no convencional, según un comunicado de BioMed Central, editora de la revista EPJ Data Science, del grupo Nature.

A continuación, los autores se fijaron en aquellos oyentes de música no convencional y utilizaron un algoritmo para clasificarlos.

Los grupos fueron: oyentes de géneros musicales que sólo contienen instrumentos acústicos, como el folk, oyentes de música de "alta energía", como el rock duro y el hip-hop, oyentes de música con instrumentos acústicos y sin voces, como el 'ambient', y usuarios de música sin voces como la electrónica.

Los autores compararon los historiales de escucha de cada grupo e identificaron qué usuarios eran más propensos a escuchar música fuera de sus géneros preferidos y la diversidad de géneros musicales escuchados en cada grupo.

La investigación se publicó en la revista EPJ Data Science / Foto: Cortesía Deezer

Los que escuchaban mayoritariamente 'ambient' eran más propensos a oír también la música preferida por los oyentes de hard rock, folk o electrónica.

Sin embargo, los que más escuchaban música de "alta energía" eran los menos propensos a escuchar también la música preferida por los oyentes de folk, electrónica o 'ambient', aunque escuchaban la mayor variedad de géneros, por ejemplo, hard rock, punk, cantautor y hip-hop.

En cuanto a si gustaban o no las recomendaciones, se observó en este grupo de música no convencional que los que escuchaban sobre todo música como el rock duro o rap parecían recibir recomendaciones musicales menos precisas y los que escuchaban sobre todo música 'ambient' parecían recibir las recomendaciones más atinadas.

Elisabeth Lex, autora del estudio, resume: "Nuestros resultados sugieren que muchas de las técnicas de recomendación musical más avanzadas pueden no ofrecer recomendaciones de calidad a los oyentes de música no convencional".

Esto podría deberse a que los algoritmos están sesgados hacia la música más popular, lo que hace que la música no convencional tenga menos probabilidades de ser recomendada.

Los autores son de la Universidad Tecnológica de Graz, del Know-Center GmbH, la Universidad Johannes Kepler de Linz, la Universidad de Innsbruck y la Universidad de Utrecht; estos advierten de que su análisis se basa en una muestra de Last.fm, por lo que los resultados pueden no ser representativos de todos los usuarios de esta plataforma o de otras.

No obstante, podrían servir de base para el diseño de sistemas de recomendación musical más precisos, afirman.

Lee también otros contenidos de Normal ⬇️

Las recomendaciones musicales generadas por algoritmos pueden ser menos precisas para los oyentes de estilos musicales como el rock duro o el hip-hop, según una investigación publicada en la revista EPJ Data Science.

Los investigadores compararon la precisión de las recomendaciones generadas por algoritmos para los oyentes de música convencional o dominante (mainstream) y no convencional, para lo que utilizaron un conjunto de datos que contenía los historiales de escucha de 4.148 usuarios de la plataforma Last.fm.

Basándose en los artistas que los usuarios escuchaban con más frecuencia, los autores utilizaron un modelo computacional para predecir la probabilidad de que a estos les gustara la música que recomendaban cuatro algoritmos comunes usados en recomendaciones.

Comprobaron que los oyentes de música convencional parecían recibir consejos musicales más precisos que los oyentes de música no convencional, según un comunicado de BioMed Central, editora de la revista EPJ Data Science, del grupo Nature.

A continuación, los autores se fijaron en aquellos oyentes de música no convencional y utilizaron un algoritmo para clasificarlos.

Los grupos fueron: oyentes de géneros musicales que sólo contienen instrumentos acústicos, como el folk, oyentes de música de "alta energía", como el rock duro y el hip-hop, oyentes de música con instrumentos acústicos y sin voces, como el 'ambient', y usuarios de música sin voces como la electrónica.

Los autores compararon los historiales de escucha de cada grupo e identificaron qué usuarios eran más propensos a escuchar música fuera de sus géneros preferidos y la diversidad de géneros musicales escuchados en cada grupo.

La investigación se publicó en la revista EPJ Data Science / Foto: Cortesía Deezer

Los que escuchaban mayoritariamente 'ambient' eran más propensos a oír también la música preferida por los oyentes de hard rock, folk o electrónica.

Sin embargo, los que más escuchaban música de "alta energía" eran los menos propensos a escuchar también la música preferida por los oyentes de folk, electrónica o 'ambient', aunque escuchaban la mayor variedad de géneros, por ejemplo, hard rock, punk, cantautor y hip-hop.

En cuanto a si gustaban o no las recomendaciones, se observó en este grupo de música no convencional que los que escuchaban sobre todo música como el rock duro o rap parecían recibir recomendaciones musicales menos precisas y los que escuchaban sobre todo música 'ambient' parecían recibir las recomendaciones más atinadas.

Elisabeth Lex, autora del estudio, resume: "Nuestros resultados sugieren que muchas de las técnicas de recomendación musical más avanzadas pueden no ofrecer recomendaciones de calidad a los oyentes de música no convencional".

Esto podría deberse a que los algoritmos están sesgados hacia la música más popular, lo que hace que la música no convencional tenga menos probabilidades de ser recomendada.

Los autores son de la Universidad Tecnológica de Graz, del Know-Center GmbH, la Universidad Johannes Kepler de Linz, la Universidad de Innsbruck y la Universidad de Utrecht; estos advierten de que su análisis se basa en una muestra de Last.fm, por lo que los resultados pueden no ser representativos de todos los usuarios de esta plataforma o de otras.

No obstante, podrían servir de base para el diseño de sistemas de recomendación musical más precisos, afirman.

Lee también otros contenidos de Normal ⬇️

Sociedad

Realizan funeral de la periodista Lourdes Maldonado en Tijuana

Los hermanos de Lourdes Maldonado agradecieron tanto al gobierno de Baja California, así como a las autoridades de Tijuana por el apoyo recibido

Justicia

Emilio Lozoya seguirá en prisión por caso Odebrecht

Un juez federal determinó mantener al exdirector de Pemex en la cárcel por todo lo que dure el proceso en su contra

Justicia

Cártel de Los Pelones, los asesinos del gerente de Mamitas Beach Club

El Fiscal General del Estado, Óscar Montes de Oca Rosales, confirmó el nombre del grupo criminal que sería responsable de la muerte de Federico Mazzoni

Sociedad

#Soy Bajo Observación | La brecha de género en el trabajo existe

Las mujeres en México tienen menor representación en todos los niveles de trabajo

Literatura

La escritora Elizabeth Strout inicia la edición de su obra en México

La autora ganadora del Pulitzer Elizabeth Strout, presenta su nueva novela, Ay, Wiliam, con la que inicia la edición de su obra en México

Mundo

#Soy | Thierry Mugler, el diseñador que convirtió los desfiles en espectáculos

Los desfiles del diseñador recientemente fallecido se cotizaban como si fueran un concierto de rock

Gossip

Leonardo de Lozanne retoma su faceta como solista

Lluvia de fuego, sencillo con el que inicia un nuevo proyecto donde vincula la música, el teatro y el baile 

Gossip

Ale Zéguer presenta su primer disco y vence su miedo al escenario

Ale Zéguer habla sobre el impulso que la composición le dio a su carrera