/ sábado 6 de junio de 2020

Imposible pronosticar fracción de población que tuvo contacto con virus del Covid-19

Así lo señala el Pronóstico de demanda hospitalaria por brotes epidémicos de Covid-19 (Modelo AMA).

Investigadores responsables de elaborar las proyecciones y registrar la evolución de la epidemia de Covid-19 en México aseguraron que es “imposible pronosticar” la fracción de la población que habrá estado en contacto con el virus que provoca el coronavirus y se convierte en un problema para poder hablar de inmunidad de rebaño y poder defender a la población, al presentar el Pronóstico de demanda hospitalaria por brotes epidémicos de Covid-19 (Modelo AMA).

Los datos que este grupo son los que utiliza la Secretaría de Salud para la toma de decisiones en la expansión hospitalaria y en el registro de la evolución del virus para la atención de los mexicanos. Una proporción de los datos son informados en la conferencia de prensa del subsecretario de Prevención y Promoción de la Salud, Hugo López-Gatell.

Los científicos del Centro de Investigación en Matemáticas del Conacyt también reconocieron que al inicio del desarrollo de las ecuaciones matemáticas se dieron “cuenta muy rápidamente que uno no podía modelar la epidemia a nivel nacional porque se rompe en muchas pequeñas epidemias y se hizo a nivel de 74 zonas metropolitanas, con datos que corresponden al censo 2015 y proyecciones poblacionales se tomaron de Conapo 2020”.

Consideraron que “la fecha de pico se estimó de forma más razonables”, aunque en la información que el subsecretario López-Gatell ha dado públicamente modificó hasta ahora entres ocasiones las fechas de máximo contagio, del 6 de mayo pasó al 8 de mayo, luego a estas primeras dos semanas del mes de junio.

Los investigadores Marcos Capistrán y Andrés Christen García indicaron que hasta ahora es “imposible pronosticar” la fracción de la población que habrá estado en contacto con el virus al final del brote actual y se convierte en un problema para poder hablar de inmunidad de rebaño y poder defender a la población.

En el caso de los asintomáticos las proporciones son variables en los grupos de edad, los datos son variables, entre 10 y 75% entre los adultos y hasta 95% en niños.

Sin tener un número confiable de las personas involucradas en la epidemia, por ende no es posible establecer la cantidad de recuperados y que se espera sean seropositivos.

Marcos Capistrán, investigador del Centro de Investigación Matemática (CIMAT) y líder del proyecto, dijo que aún no se conoce bien la tasa de letalidad y propagación de la enfermedad, por ello es un reto a largo plazo.

“La situación actual de Covid está determinada por la falta de tratamiento farmacológico, sobre todo para quienes tienen manifestaciones graves de la infección y porque la forma asintomática de la infección no está caracterizada”.

Explicó que el modelo epidémico está gobernado por datos por la necesidad de pronóstico durante la emergencia y la idea es contestar a preguntas como cuántas camas de hospital se van a necesitar, cuándo es el pico y cuándo va a terminar, pero “algunas preguntas se pueden contestar y otras no”.

Indicó que ante en la epidemia la comprensión del problema va evolucionando. El modelo debe asistir para la toma de decisiones y se conforma con datos epidemiológico.

Aseguró que el modelo “no se debe ver como verdad científica, la tarea del modelador es construir confianza sobre la capacidad predictiva del modelo, entendiendo que tiene alcances y limitaciones y es imperativo ser sobrios y muy autocríticos tanto para postular modelos, interpretaciones y hacer afirmaciones de los modelos”.

Capistrán dijo que desde el año 2000 hemos vivido otras epidemias de diferente intensidad como Ébola, Zika, MERS, SARS y Covid 19, es creíble pensar que esta no será la última emergencia pandémica.

Consideró que los pronósticos probabilísticos, a mediano plazo, buscó proyectar la demanda de camas de hospital y soporte respiratorio o ventilación.

Para hacerlo se recurrió al registro de casos confirmados de ingreso hospitalario y el número de decesos confirmados. En el caso de los enfermos asintomáticos no se han podido caracterizar por lo que es “imposible pronosticar la fracción de la población que habrá estado en contacto con el virus al final del brote actual, es un problema para poder hablar de inmunidad de rebaño y poder defender a la población”.

El modelo no considera densidad poblacional, percepción del riesgo o la fuerza dispersión de la infección, donde una persona puede tener un número grande de contactos como un chofer o repartidos o que pudiera contagiar a un número importante de personas.

“Con estas limitaciones disminuye capacidad predictiva del modelo. Sin embargo, en el caso de zonas metropolitanas y en algunos estados sí podemos hacer pronósticos con cierto nivel de confianza”.

“No puede usar subconjuntos del modelo para tomar decisiones o pronósticos de un brote epidémico”.

Es un sistema que se compone de 39 ecuaciones que se crearon a partir de casos registrados en el IMSS.

Andrés Christen Gracia, investigador del Instituto de Investigaciones Matemáticas, planteó que el modelo mide tres parámetros: los tiempos de residencia, etapas de transición por la enfermedad o bien las hospitalizadas.

En la información hay un retraso de notificación de 7 días lo cual es usual, en Alemania es 5 días y aquí es 7, “mientras se va haciendo el proceso burocrático de la notificación, para jueves utilizamos los 7 días, la siguiente semana ya va a quedar considerada”.

El análisis se realiza en 90 tipos de datos en 30 minutos. Se produce el reporte, se revisa caso por caso y se sube al sitio de Conacyt. El modelo tuvo ajustes el 22 de marzo y el 3 de abril para la zona metropolitana.

El modelo no toma en cuenta la densidad de la población, el índice de desarrollo y los factores de vida, pero el modelo es suficientemente poderoso para dar pronósticos de los que puede pasar y medir las diferencias regionales.


Te recomendamos el podcast ⬇

Spotify

Apple Podcasts

Google Podcasts

Investigadores responsables de elaborar las proyecciones y registrar la evolución de la epidemia de Covid-19 en México aseguraron que es “imposible pronosticar” la fracción de la población que habrá estado en contacto con el virus que provoca el coronavirus y se convierte en un problema para poder hablar de inmunidad de rebaño y poder defender a la población, al presentar el Pronóstico de demanda hospitalaria por brotes epidémicos de Covid-19 (Modelo AMA).

Los datos que este grupo son los que utiliza la Secretaría de Salud para la toma de decisiones en la expansión hospitalaria y en el registro de la evolución del virus para la atención de los mexicanos. Una proporción de los datos son informados en la conferencia de prensa del subsecretario de Prevención y Promoción de la Salud, Hugo López-Gatell.

Los científicos del Centro de Investigación en Matemáticas del Conacyt también reconocieron que al inicio del desarrollo de las ecuaciones matemáticas se dieron “cuenta muy rápidamente que uno no podía modelar la epidemia a nivel nacional porque se rompe en muchas pequeñas epidemias y se hizo a nivel de 74 zonas metropolitanas, con datos que corresponden al censo 2015 y proyecciones poblacionales se tomaron de Conapo 2020”.

Consideraron que “la fecha de pico se estimó de forma más razonables”, aunque en la información que el subsecretario López-Gatell ha dado públicamente modificó hasta ahora entres ocasiones las fechas de máximo contagio, del 6 de mayo pasó al 8 de mayo, luego a estas primeras dos semanas del mes de junio.

Los investigadores Marcos Capistrán y Andrés Christen García indicaron que hasta ahora es “imposible pronosticar” la fracción de la población que habrá estado en contacto con el virus al final del brote actual y se convierte en un problema para poder hablar de inmunidad de rebaño y poder defender a la población.

En el caso de los asintomáticos las proporciones son variables en los grupos de edad, los datos son variables, entre 10 y 75% entre los adultos y hasta 95% en niños.

Sin tener un número confiable de las personas involucradas en la epidemia, por ende no es posible establecer la cantidad de recuperados y que se espera sean seropositivos.

Marcos Capistrán, investigador del Centro de Investigación Matemática (CIMAT) y líder del proyecto, dijo que aún no se conoce bien la tasa de letalidad y propagación de la enfermedad, por ello es un reto a largo plazo.

“La situación actual de Covid está determinada por la falta de tratamiento farmacológico, sobre todo para quienes tienen manifestaciones graves de la infección y porque la forma asintomática de la infección no está caracterizada”.

Explicó que el modelo epidémico está gobernado por datos por la necesidad de pronóstico durante la emergencia y la idea es contestar a preguntas como cuántas camas de hospital se van a necesitar, cuándo es el pico y cuándo va a terminar, pero “algunas preguntas se pueden contestar y otras no”.

Indicó que ante en la epidemia la comprensión del problema va evolucionando. El modelo debe asistir para la toma de decisiones y se conforma con datos epidemiológico.

Aseguró que el modelo “no se debe ver como verdad científica, la tarea del modelador es construir confianza sobre la capacidad predictiva del modelo, entendiendo que tiene alcances y limitaciones y es imperativo ser sobrios y muy autocríticos tanto para postular modelos, interpretaciones y hacer afirmaciones de los modelos”.

Capistrán dijo que desde el año 2000 hemos vivido otras epidemias de diferente intensidad como Ébola, Zika, MERS, SARS y Covid 19, es creíble pensar que esta no será la última emergencia pandémica.

Consideró que los pronósticos probabilísticos, a mediano plazo, buscó proyectar la demanda de camas de hospital y soporte respiratorio o ventilación.

Para hacerlo se recurrió al registro de casos confirmados de ingreso hospitalario y el número de decesos confirmados. En el caso de los enfermos asintomáticos no se han podido caracterizar por lo que es “imposible pronosticar la fracción de la población que habrá estado en contacto con el virus al final del brote actual, es un problema para poder hablar de inmunidad de rebaño y poder defender a la población”.

El modelo no considera densidad poblacional, percepción del riesgo o la fuerza dispersión de la infección, donde una persona puede tener un número grande de contactos como un chofer o repartidos o que pudiera contagiar a un número importante de personas.

“Con estas limitaciones disminuye capacidad predictiva del modelo. Sin embargo, en el caso de zonas metropolitanas y en algunos estados sí podemos hacer pronósticos con cierto nivel de confianza”.

“No puede usar subconjuntos del modelo para tomar decisiones o pronósticos de un brote epidémico”.

Es un sistema que se compone de 39 ecuaciones que se crearon a partir de casos registrados en el IMSS.

Andrés Christen Gracia, investigador del Instituto de Investigaciones Matemáticas, planteó que el modelo mide tres parámetros: los tiempos de residencia, etapas de transición por la enfermedad o bien las hospitalizadas.

En la información hay un retraso de notificación de 7 días lo cual es usual, en Alemania es 5 días y aquí es 7, “mientras se va haciendo el proceso burocrático de la notificación, para jueves utilizamos los 7 días, la siguiente semana ya va a quedar considerada”.

El análisis se realiza en 90 tipos de datos en 30 minutos. Se produce el reporte, se revisa caso por caso y se sube al sitio de Conacyt. El modelo tuvo ajustes el 22 de marzo y el 3 de abril para la zona metropolitana.

El modelo no toma en cuenta la densidad de la población, el índice de desarrollo y los factores de vida, pero el modelo es suficientemente poderoso para dar pronósticos de los que puede pasar y medir las diferencias regionales.


Te recomendamos el podcast ⬇

Spotify

Apple Podcasts

Google Podcasts

Política

Corte ha dado revés a cuatro consultas populares

López Obrador advirtió que enviará una iniciativa para reformar el artículo 35 de la Constitución si la Corte no da su aval

CDMX

Violencia en marcha feminista desconcierta a mujeres policías

Entre las imágenes que circularon en redes sociales, se encuentra la de Erika Cruz, Policía a quien se le captó con lágrimas en los ojos

Política

Apunta Morena a cuatro fideicomisos

Representan 58.24 por ciento de los 68 mil 500 mdp que quiere recaudar el partido

Finanzas

Crean recorrido virtual de la ruta del Tren Maya

Con un presupuesto de 1.8 mdp, Cautiva Imagen retratará los primeros 635 kilómetros del tour

CDMX

Catarinas, el primer sistema local de bicis

No compiten con Ecobici, pero como ellos no llegan a esa zona capitalina, Azcapotzalco puede dar el servicio

Finanzas

AL y el Caribe pierden 34 millones de empleos por Covid

La zona es la más afectada en el mundo, en términos de la caída de los ingresos laborales, precisó la OIT

Finanzas

#Data | Turismo extranjero comenzó a recuperarse en julio

El arribo de turistas extranjeros es uno de los indicadores de la actividad económica nacional que más impacto han resentido por la pandemia.

Sociedad

Qatar analiza solicitar visa a mexicanos antes del Mundial 2022

El embajador catarí señala que la cuatroté da largas para abrirle la puerta del país a Qatar Airways

CDMX

Violencia en marcha feminista desconcierta a mujeres policías

Entre las imágenes que circularon en redes sociales, se encuentra la de Erika Cruz, Policía a quien se le captó con lágrimas en los ojos