/ lunes 25 de marzo de 2024

La importancia de una Inteligencia Artificial justa y equitativa

La búsqueda de la equidad en la Inteligencia Artificial no es sólo un imperativo ético, sino un requisito para fomentar la confianza, la inclusión y el avance responsable de la tecnología

La capacidad de la Inteligencia Artificial (IA) para procesar y analizar grandes cantidades de datos ha revolucionado los procesos de toma de decisiones, haciendo que las operaciones en múltiples sectores de la sociedad sean más eficientes y, en muchos casos, más efectivas.

Sin embargo, ese poder transformador conlleva una responsabilidad importante: la necesidad de garantizar que estas tecnologías se desarrollen y desplieguen de manera equitativa y justa. En resumen, la IA debe ser justa.

Te puede interesar: Inteligencia Artificial renueva la televisión

La búsqueda de la equidad en la IA no es simplemente un imperativo ético sino un requisito para fomentar la confianza, la inclusión y el avance responsable de la tecnología. Sin embargo, garantizar que la IA sea justa es un desafío importante. Y además de eso, mi investigación como informático que estudia la IA muestra que los intentos de garantizar la equidad en la IA pueden tener consecuencias no deseadas.


Por qué es importante la equidad en la IA

Éticamente, la justicia es la piedra angular para generar confianza y aceptación de los sistemas de IA. Las personas deben confiar en que las decisiones de IA que afectan sus vidas (por ejemplo, los algoritmos de contratación) se toman de manera equitativa.

➡️ Únete al canal de El Sol de México en WhatsApp para no perderte la información más importante

Socialmente, los sistemas de IA que incorporan la justicia pueden ayudar a abordar y mitigar los sesgos históricos (por ejemplo, aquellos contra las mujeres y las minorías) fomentando la inclusión. Legalmente, incorporar la equidad en los sistemas de IA ayuda a alinear esos sistemas con las leyes y regulaciones contra la discriminación en todo el mundo.

La justicia es la piedra angular para generar confianza y aceptación de los sistemas de IA

Pero es difícil ser justos en la IA

La equidad es inherentemente subjetiva y está influenciada por perspectivas culturales, sociales y personales. En el contexto de la IA, los investigadores, desarrolladores y formuladores de políticas a menudo traducen la equidad en la idea de que los algoritmos no deben perpetuar ni exacerbar los sesgos o desigualdades existentes.

Sin embargo, medir la equidad e incorporarla a los sistemas de IA está plagado de decisiones subjetivas y dificultades técnicas. Los investigadores y formuladores de políticas han propuesto varias definiciones de justicia, como paridad demográfica, igualdad de oportunidades y justicia individual.

Estas definiciones implican diferentes formulaciones matemáticas y filosofías subyacentes. También suelen entrar en conflicto, lo que pone de relieve la dificultad de satisfacer todos los criterios de equidad simultáneamente en la práctica.


Efectos no deseados sobre la equidad

La naturaleza multifacética de la equidad significa que los sistemas de IA deben ser examinados en cada nivel de su ciclo de desarrollo, desde las fases iniciales de diseño y recopilación de datos hasta su implementación final y evaluación continua. Este escrutinio revela otra capa de complejidad. Los sistemas de IA rara vez se implementan de forma aislada.

La investigación que realizamos mis colegas y yo muestra que limitaciones como los recursos computacionales, los tipos de hardware y la privacidad pueden influir significativamente en la equidad de los sistemas de IA.

En nuestro estudio sobre la poda de redes (un método para hacer que los modelos complejos de aprendizaje automático sean más pequeños y más rápidos) descubrimos que este proceso puede afectar injustamente a ciertos grupos. Esto sucede porque es posible que la poda no considere cómo se representan los diferentes grupos en los datos y en el modelo, lo que genera resultados sesgados.

De manera similar, las técnicas de preservación de la privacidad, si bien son cruciales, pueden oscurecer los datos necesarios para identificar y mitigar sesgos o afectar desproporcionadamente los resultados para las minorías. Por ejemplo, cuando los organismos de estadística añaden ruido a los datos para proteger la privacidad, esto puede llevar a una asignación injusta de recursos porque el ruido añadido afecta a algunos grupos más que a otros. Esta desproporcionalidad también puede sesgar los procesos de toma de decisiones que dependen de estos datos, como la asignación de recursos para los servicios públicos.

El camino a seguir

➡️ Suscríbete a nuestro Newsletter y recibe las notas más relevantes en tu correo

Hacer que la IA sea justa no es sencillo y no existe una solución única para todos. Requiere un proceso de aprendizaje, adaptación y colaboración continuos. Dado que los prejuicios son omnipresentes en la sociedad, creo que las personas que trabajan en el campo de la IA deberían reconocer que no es posible lograr una justicia perfecta y, en cambio, esforzarse por lograr una mejora continua.

Este desafío requiere un compromiso con una investigación rigurosa, una formulación de políticas reflexiva y una práctica ética. Para que funcione, los investigadores, desarrolladores y usuarios de IA deberán garantizar que las consideraciones de equidad estén integradas en todos los aspectos del proceso de IA, desde su concepción, pasando por la recopilación de datos y el diseño de algoritmos hasta su implementación y más allá.


* Profesor asistente de Ciencias de la Computación, Universidad de Virginia.



La capacidad de la Inteligencia Artificial (IA) para procesar y analizar grandes cantidades de datos ha revolucionado los procesos de toma de decisiones, haciendo que las operaciones en múltiples sectores de la sociedad sean más eficientes y, en muchos casos, más efectivas.

Sin embargo, ese poder transformador conlleva una responsabilidad importante: la necesidad de garantizar que estas tecnologías se desarrollen y desplieguen de manera equitativa y justa. En resumen, la IA debe ser justa.

Te puede interesar: Inteligencia Artificial renueva la televisión

La búsqueda de la equidad en la IA no es simplemente un imperativo ético sino un requisito para fomentar la confianza, la inclusión y el avance responsable de la tecnología. Sin embargo, garantizar que la IA sea justa es un desafío importante. Y además de eso, mi investigación como informático que estudia la IA muestra que los intentos de garantizar la equidad en la IA pueden tener consecuencias no deseadas.


Por qué es importante la equidad en la IA

Éticamente, la justicia es la piedra angular para generar confianza y aceptación de los sistemas de IA. Las personas deben confiar en que las decisiones de IA que afectan sus vidas (por ejemplo, los algoritmos de contratación) se toman de manera equitativa.

➡️ Únete al canal de El Sol de México en WhatsApp para no perderte la información más importante

Socialmente, los sistemas de IA que incorporan la justicia pueden ayudar a abordar y mitigar los sesgos históricos (por ejemplo, aquellos contra las mujeres y las minorías) fomentando la inclusión. Legalmente, incorporar la equidad en los sistemas de IA ayuda a alinear esos sistemas con las leyes y regulaciones contra la discriminación en todo el mundo.

La justicia es la piedra angular para generar confianza y aceptación de los sistemas de IA

Pero es difícil ser justos en la IA

La equidad es inherentemente subjetiva y está influenciada por perspectivas culturales, sociales y personales. En el contexto de la IA, los investigadores, desarrolladores y formuladores de políticas a menudo traducen la equidad en la idea de que los algoritmos no deben perpetuar ni exacerbar los sesgos o desigualdades existentes.

Sin embargo, medir la equidad e incorporarla a los sistemas de IA está plagado de decisiones subjetivas y dificultades técnicas. Los investigadores y formuladores de políticas han propuesto varias definiciones de justicia, como paridad demográfica, igualdad de oportunidades y justicia individual.

Estas definiciones implican diferentes formulaciones matemáticas y filosofías subyacentes. También suelen entrar en conflicto, lo que pone de relieve la dificultad de satisfacer todos los criterios de equidad simultáneamente en la práctica.


Efectos no deseados sobre la equidad

La naturaleza multifacética de la equidad significa que los sistemas de IA deben ser examinados en cada nivel de su ciclo de desarrollo, desde las fases iniciales de diseño y recopilación de datos hasta su implementación final y evaluación continua. Este escrutinio revela otra capa de complejidad. Los sistemas de IA rara vez se implementan de forma aislada.

La investigación que realizamos mis colegas y yo muestra que limitaciones como los recursos computacionales, los tipos de hardware y la privacidad pueden influir significativamente en la equidad de los sistemas de IA.

En nuestro estudio sobre la poda de redes (un método para hacer que los modelos complejos de aprendizaje automático sean más pequeños y más rápidos) descubrimos que este proceso puede afectar injustamente a ciertos grupos. Esto sucede porque es posible que la poda no considere cómo se representan los diferentes grupos en los datos y en el modelo, lo que genera resultados sesgados.

De manera similar, las técnicas de preservación de la privacidad, si bien son cruciales, pueden oscurecer los datos necesarios para identificar y mitigar sesgos o afectar desproporcionadamente los resultados para las minorías. Por ejemplo, cuando los organismos de estadística añaden ruido a los datos para proteger la privacidad, esto puede llevar a una asignación injusta de recursos porque el ruido añadido afecta a algunos grupos más que a otros. Esta desproporcionalidad también puede sesgar los procesos de toma de decisiones que dependen de estos datos, como la asignación de recursos para los servicios públicos.

El camino a seguir

➡️ Suscríbete a nuestro Newsletter y recibe las notas más relevantes en tu correo

Hacer que la IA sea justa no es sencillo y no existe una solución única para todos. Requiere un proceso de aprendizaje, adaptación y colaboración continuos. Dado que los prejuicios son omnipresentes en la sociedad, creo que las personas que trabajan en el campo de la IA deberían reconocer que no es posible lograr una justicia perfecta y, en cambio, esforzarse por lograr una mejora continua.

Este desafío requiere un compromiso con una investigación rigurosa, una formulación de políticas reflexiva y una práctica ética. Para que funcione, los investigadores, desarrolladores y usuarios de IA deberán garantizar que las consideraciones de equidad estén integradas en todos los aspectos del proceso de IA, desde su concepción, pasando por la recopilación de datos y el diseño de algoritmos hasta su implementación y más allá.


* Profesor asistente de Ciencias de la Computación, Universidad de Virginia.



Justicia

Murillo Karam llega a su casa en Lomas de Chapultepec

Tras casi dos años en prisión, Jesús Murillo Karam abandonó la Torre Médica del penal de Tepepan y llegó a su domicilio ubicado en Lomas de Chapultepec en la Ciudad de México

Finanzas

Con Colmenares, auditorías de la ASF recuperan 84% menos dinero

Aunque ha crecido el número de auditorías realizadas, las recuperaciones de dinero derivadas de estos ejercicios han caído un 84 por ciento

Sociedad

Civiles armados matan a tres personas en Jerez, Zacatecas

En el enfrentamiento, los sujetos armados hirieron también a tres policías

Elecciones 2024

Dan prisión preventiva a implicado en el asesinato del candidato Jaime Vera del PVEM

Las investigaciones establecieron que el posible móvil del crimen fue el intento de robo de su vehículo y otros objetos de valor

Mundo

EU prepara buques de guerra para defender a Israel en caso de ataque iraní

Estas medidas de Estados Unidos se produjeron después de una filtración sobre el momento y ubicación del posible ataque iraní

Elecciones 2024

Policía resguarda a candidata Graciela Villarreal tras ataque en mitin de El Carmen, NL

La candidata de Morena-PVEM dijo que se encuentra bien y su colaborador está fuera de peligro, luego dos hombres abrieron fuego durante su mitin